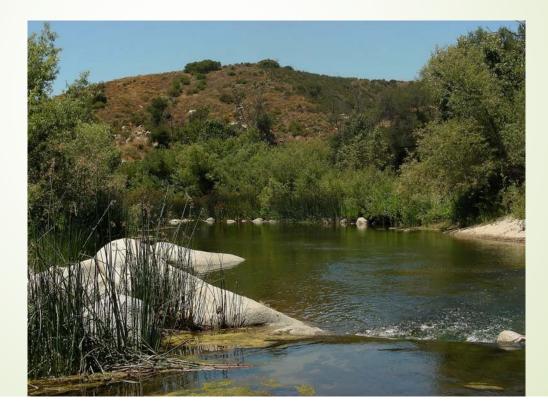
Hydrology and Riparian Vegetation on the Coastal Slope of California

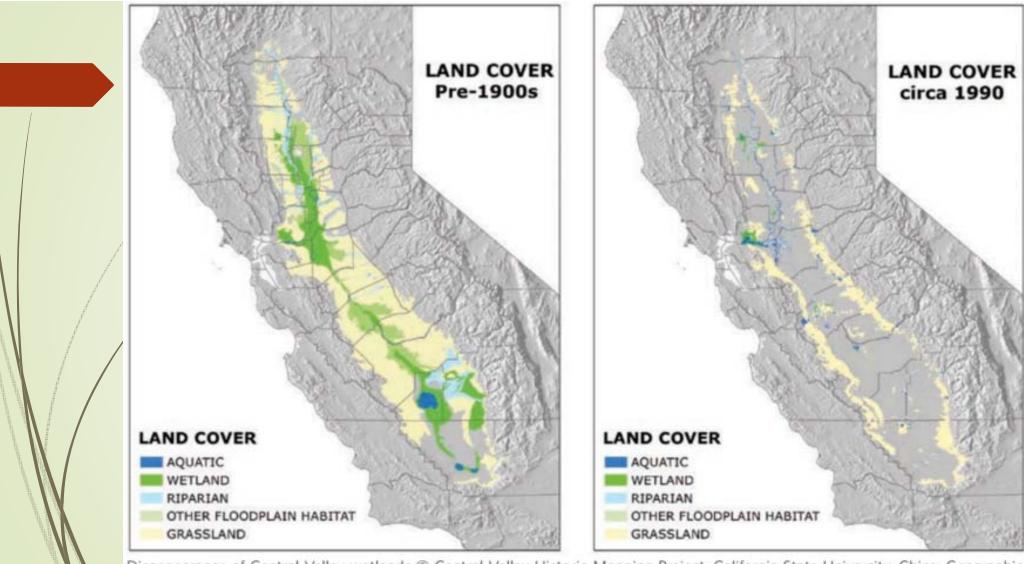
Jon Avery, U.S. Fish and Wildlife Service Carlsbad, April 24, 2018



Hydrological features supporting least Bell's vireo breeding habitat

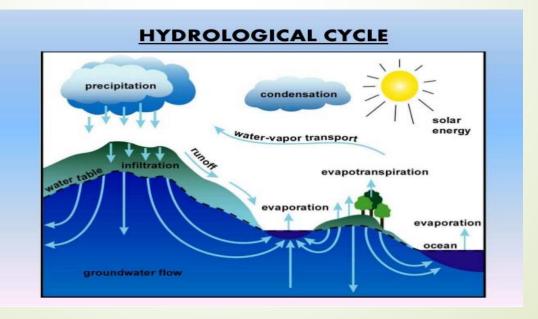
Groundwater
Flooding
(Surface water)

Groundwater, surface water, and flooding combine to support riparian vegetation depended upon by least Bell's vireo.



Groundwater and surface water are vital resources in California — for agricultural, domestic, and industrial use, and ecosystem sustenance.

California riparian environments are particularly vulnerable to water-related land-use practices and are currently threatened by rapid population and socioeconomic changes (Postel 2000, Stromberg et al. 1993).


Disappearance of Central Valley wetlands © Central Valley Historic Mapping Project, California State University, Chico, Geographic Information Center, 2003

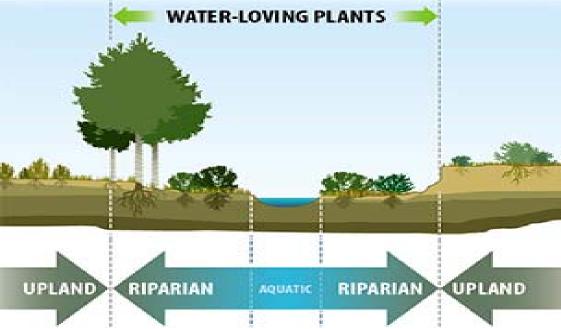
Vireo habitat – floodplain space, flooding, soil moisture, (surface water), and groundwater

HYDROLOGY

Hydrology is concerned with the properties of the earth's water, and especially its movement in relation to land.

Riparian

Riparian means "stream-side" and relates to wetlands or other features adjacent to streams. It typically does not refer to the aquatic portion of the stream itself.

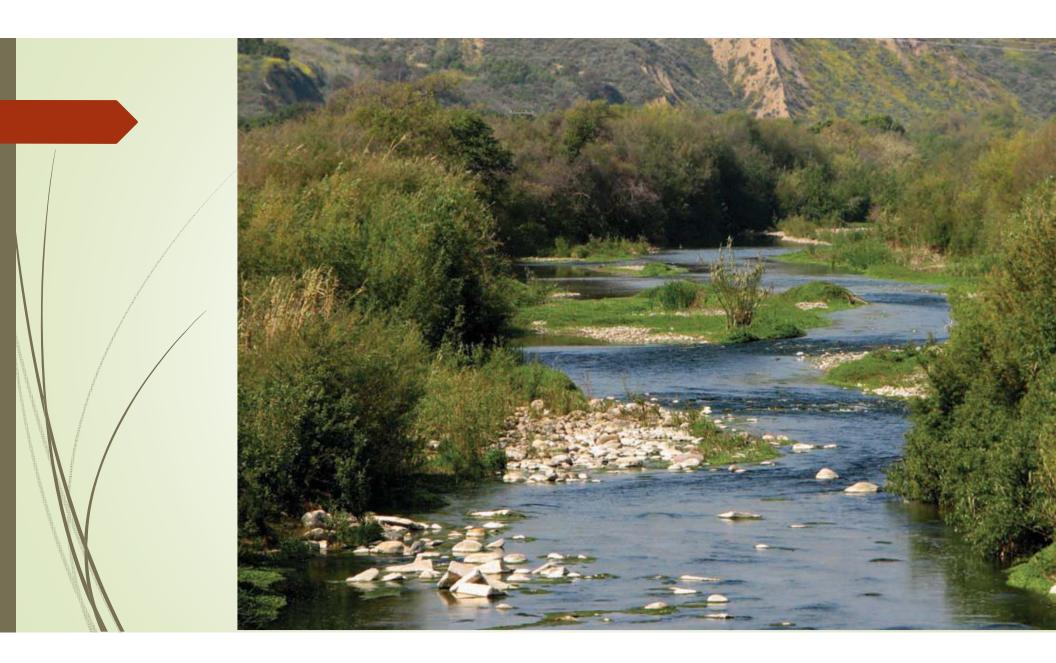

Riparian Zones

Riparian zones are transitional areas between terrestrial and aquatic ecosystems that depend on the existence of surface or subsurface water flows.

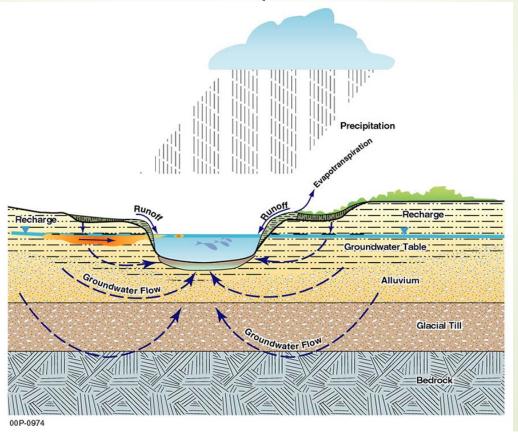
Riparian Vegetation

Riparian vegetation consists of plant communities along stream margins and floodplains characterized by hydrophilic plants.

Least Bell's vireo

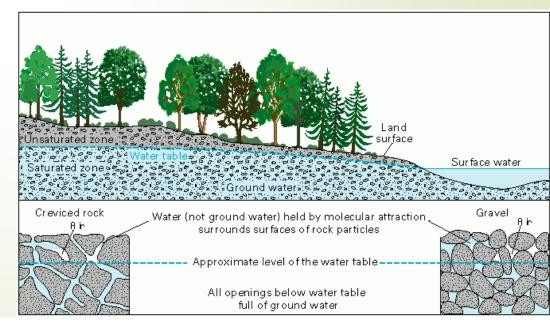

- Obligate riparian breeders
- Structurally diverse scrub and woodland areas along water courses
- Typically utilize willow (Salix sp.) dominated areas

Vireo Habitat Vegetation Age and Structure

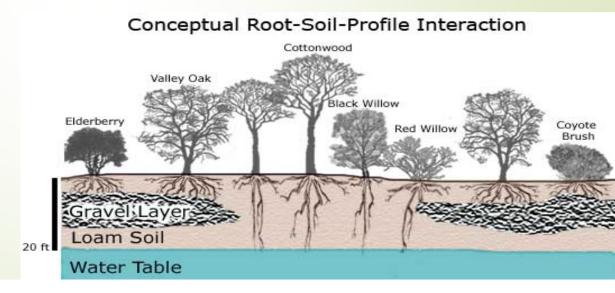

- Least Bell's vireo prefer early successional riparian habitat =
 - Dense cover within 3 to 6 feet of the ground where nests are typically placed
 - Dense, stratified canopy for foraging for insect prey
 - Typically utilize 5-10 year old native riparian communities that cyclically develop following periodic floods

Vireo habitat dominant plant species

- Overstory:
 - Willow trees (Salix spp.)
 - Freemont cottonwood (Populus fremontii)
 - Mulefat (Baccharis salisifolia)
- Understory:
 - California wild rose (Rosa californica)
 - Poison oak (Toxicodendron diversiloba)
 - California blackberry (Rubus ursinus)



Groundwater - water beneath the surface of the ground, consisting largely of surface water that has seeped down


Groundwater

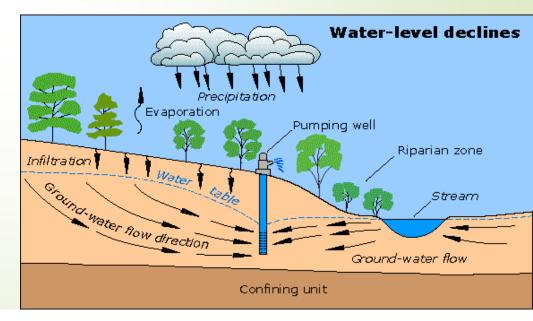
The interactions between the surface water in streams and groundwater is stronger than most people think. In many locations in California the surface water flowing in streams comes from seepage of groundwater into the streambed (USGS 2016).

What groundwater does for vireo habitat:

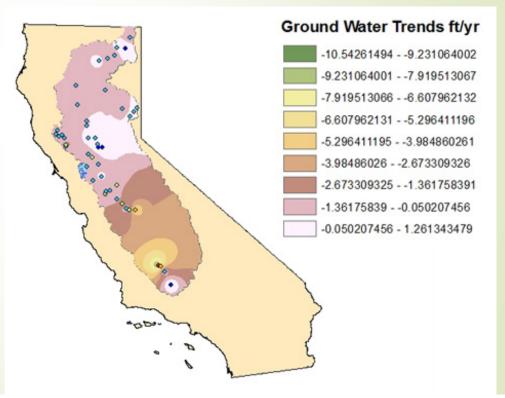
Groundwater provides effective moisture to mature and immature riparian vegetation when it is within 1 to 7 feet of ground surface

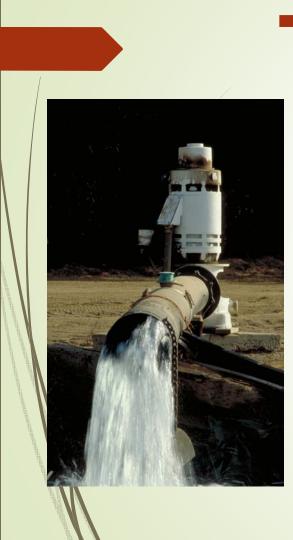
What groundwater does for vireo habitat (cont.):

- Provides available moisture to riparian vegetation on floodplain areas away from surface water and channel margins
- Provides moisture to riparian vegetation during drought periods
- Provides moisture to riparian vegetation along intermittent streams
- Surfacing groundwater flows downstream and maintains downstream riparian areas


Groundwater pumping

Groundwater pumping can alter how water moves between an aquifer and a stream by either intercepting groundwater flow that discharges into the surface-water body under natural conditions, or by increasing the rate of water percolation from surface flows into an aquifer.




Groundwater pumping

A related effect of groundwater pumping is the lowering of groundwater levels below the depth that riparian vegetation needs to function or survive. The overall effect is a loss of riparian vegetation and wildlife habitats (USGS 2016).

As groundwater levels drop riparian ecosystems in the California become degraded or are eliminated (Laity 2003, Snyder 2000, National Park Service 2004).

Riparian ecosystems of the American southwest have been and continue to be adversely affected by falling groundwater levels caused by water well pumping (Stromberg et al. 1993).

	Dep	th to ground	lwater (m)				
Species	Mean ± 1 sd	Min	Max	Range	Wetland class		
uvenile tree species							
Salix gooddingii	0.6 ± 0.6	0.1	2.0	1.9	Obligate wetland		
Populus fremontii	0.9 ± 0.5	0.2	2.0	1.8	Facultative wetland		
Fraxinus velutina	1.2 ± 0.7	0.3	2.1	1.8	Facultative		
Tamarix chinensis*	1.3 ± 0.6	0.2	2.5	2.2	Facultative wetland		
Juglans major	1.9 ± 1.0	0.3	3.9	3.6	Facultative wetland		
Celtis reticulata	2.8 ± 1.3	1.2	6.2	6.0	Facultative upland		
Prosopis velutina	2.9 ± 1.6	0.7	6.6	5.9	Facultative upland		
Rhus microphylla	3.2 ± 2.1	0.7	6.6	5.9	Upland		
Acacia greggii	4.4 ± 1.8	1.7	6.2	4.5	Upland		
Aature tree species							
Salix gooddingii	1.4 ± 0.9	0.1	3.2	3.1	Obligate wetland		
Populus fremontii	1.5 ± 1.1	0.1	5.1	5.0	Facultative wetland		
Fraxinus velutina	1.6 ± 1.1	0.4	3.2	2.8	Facultative		
Tamarix chinensis*	1.4 ± 0.6	0.4	2.5	2.1	Facultative wetland		
Juglans major	2.0 ± 1.2	0.4	4.2	3.8	Facultative wetland		
Acacia neovernicosa	2.8 ± 1.1	1.3	4.2	2.9	Upland		
Celtis reticulata	3.8 ± 2.1	0.9	7.1	6.2	Facultative upland		
Prosopis velutina	3.4 ± 1.7	0.9	8.0	7.1	Facultative upland		
Acacia greggii	4.6 ± 1.8	1.7	7.1	6.4	Upland		
hrub species							
Baccharis salicifolia	1.2 ± 0.9	0.0	2.8	2.8	Facultative wetland		
Baccharis emoryi	1.5 ± 1.3	0.5	2.9	3.4	Facultative wetland		
Senecio longilobus	2.0 ± 0.5	1.4	2.8	1.4	Upland		
Chrysothamnus nauseosus	2.1 ± 0.8	0.7	3.5	2.8	Upland		
Hymenoclea monogyra	2.1 ± 1.3	0.8	5.8	5.0	Upland		

TABLE 4. Mean depth to groundwater, standard deviation, minimum and maximum depth, range, and wetland indicator class (Reed 1988) for common woody species in San Pedro River floodplain study plots.

Stromberg, J.C., R. Tiller, and B. Richter. 1996. Effects of groundwater decline on riparian vegetation of semiarid regions: The San Pedro, Arizona. *Ecol. Applications* 6:113–131.

Black willow, Salix gooddingii

Black willow, juvenile

TABLE 4. Mean depth to groundwater, standard deviation, minimum and maximum depth, range, and wetland indicator class (Reed 1988) for common woody species in San Pedro River floodplain study plots.

Species	Dep				
	Mean ± 1 sd	Min	Max	Range	Wetland class
Juvenile tree species					
Salix gooddingii	0.6 ± 0.6	0.1	2.0	1.9	Obligate wetland
r opains ji emonin	0.2 - 0.5	0.2		1.0	Facultative wetland
Fraxinus velutina	1.2 ± 0.7	0.3	2.1	1.8	Facultative
Tamarix chinensis*	1.3 ± 0.6	0.2	2.5	2.2	Facultative wetland
Juglans major	1.9 ± 1.0	0.3		3.6	Facultative wetland
Celtis reticulata	2.8 ± 1.3	1.2	7 feet max	6.0	Facultative upland
Prosopis velutina	2.9 ± 1.6	0.7		5.9	Facultative upland
Rhus microphylla	3.2 ± 2.1	0.7	6.6	5.9	Upland
Acacia greggii	4.4 ± 1.8	1.7	6.2	4.5	Upland
Mature tree species					
Salix gooddingii	1.4 ± 0.9	0.1	3.2	3.1	Obligate wetland
Populus fremontii	1.5 ± 1.1	0.1	5.1	5.0	Facultative wetland
Fraxinus velutina	1.6 ± 1.1	0.4	3.2	2.8	Facultative

Black willow, mature

TABLE 4. Mean depth to groundwater, standard deviation, minimum and maximum depth, range, and wetland indicator class (Reed 1988) for common woody species in San Pedro River floodplain study plots.

Species	Dep				
	Mean ± 1 sd	Min	Max	Range	Wetland class
Juvenile tree species					
Salix gooddingii	0.6 ± 0.6	0.1	2.0	1.9	Obligate wetland
Populus fremontii	0.9 ± 0.5	0.2	2.0	1.8	Facultative wetland
Fraxinus velutina	1.2 ± 0.7	0.3	2.1	1.8	Facultative
Tamarix chinensis*	1.3 ± 0.6	0.2	2.5	2.2	Facultative wetland
Juglans major	1.9 ± 1.0	0.3	3.9	3.6	Facultative wetland
Celtis reticulata	2.8 ± 1.3	1.2	101	6.0	Facultative upland
Prosopis velutina	2.9 ± 1.6	0.7	10 feet max	5.9	Facultative upland
Rhus microphylla	3.2 ± 2.1	0.7	0.0	5.9	Upland
Acacia greggii	4.4 ± 1.8	1.7	-5.2 <mark>-</mark>	4.5	Upland
Mature tree species					
Salix gooddingii	1.4 ± 0.9	0.1	3.2	3.1	Obligate wetland
Topano ji emonin	1.2 - 1.1	0.1	5.2	5.0	Facultative wetland
Fraxinus velutina	1.6 ± 1.1	0.4	3.2	2.8	Facultative
Tamarix chinensis*	1.4 ± 0.6	0.4	2.5	2.1	Facultative wetland

Fremont cottonwood, Populus fremontii

Cottonwood, juvenile

TABLE 4. Mean depth to groundwater, standard deviation, minimum and maximum depth, range, and wetland indicator class (Reed 1988) for common woody species in San Pedro River floodplain study plots.

	Dep				
Species	Mean ± 1 sd	Min	Max	Range	Wetland class
luvenile tree species					
Suna Sociamen	0.0 - 0.0	0.1	2.0	1.0	Obligate wetland
Populus fremontii	0.9 ± 0.5	0.2	2.0	1.8	Facultative wetland Facultative
Tamarix chinensis*	1.3 ± 0.6	0.2		2.2	Facultative wetland
Juglans major	1.9 ± 1.0	0.3	<u>B</u> r	3.6	Facultative wetland
Celtis reticulata	2.8 ± 1.3	1.2	6	6.0	Facultative upland
Prosopis velutina	2.9 ± 1.6	0.7	7 (5.9	Facultative upland
Rhus microphylla	3.2 ± 2.1	0.7	7 feet max	5.9	Upland
Acacia greggii	4.4 ± 1.8	1.7	~	4.5	Upland
Mature tree species					
Salix gooddingii	1.4 ± 0.9	0.1	3.2	3.1	Obligate wetland
Populus fremontii	1.5 ± 1.1	0.1	5.1	5.0	Facultative wetland
Fraxinus velutina	1.6 ± 1.1	0.4	3.2	2.8	Facultative
Tamarix chinensis*	1.4 ± 0.6	0.4	2.5	2.1	Facultative wetland
Juglans major	2.0 ± 1.2	0.4	4.2	3.8	Facultative wetland
Acacia neovernicosa	2.8 ± 1.1	1.3	4.2	2.9	Upland
Celtis reticulata	3.8 ± 2.1	0.9	7.1	6.2	Facultative upland
Prosopis velutina	3.4 ± 1.7	0.9	8.0	7.1	Facultative upland
Acacia greggii	4.6 ± 1.8	1.7	7.1	6.4	Upland

Shrub species

Cottonwood, mature

TABLE 4. Mean depth to groundwater, standard deviation, minimum and maximum depth, range, and wetland indicator class (Reed 1988) for common woody species in San Pedro River floodplain study plots.

	Dep				
Species	Mean ± 1 sd	Min	Max	Range	Wetland class
Iuvenile tree species					
Salix gooddingii	0.6 ± 0.6	0.1	2.0	1.9	Obligate wetland
Populus fremontii	0.9 ± 0.5	0.2	2.0	1.8	Facultative wetland
Fraxinus velutina	1.2 ± 0.7	0.3	2.1	1.8	Facultative
Tamarix chinensis*	1.3 ± 0.6	0.2	2.5	2.2	Facultative wetland
Juglans major	1.9 ± 1.0	0.3	3.9	3.6	Facultative wetland
Celtis reticulata	2.8 ± 1.3	1.2	6.2	6.0	Facultative upland
Prosopis velutina	2.9 ± 1.6	0.7	6.6	5.9	Facultative upland
Rhus microphylla	3.2 ± 2.1	0.7	17 feet max	5.9	Upland
Acacia greggii	4.4 ± 1.8	1.7		4.5	Upland
Mature tree species					
Salix acaddinaii	1.4 ± 0.0	0.1	3.1	3.1	Obligate wetland
Populus fremontii	1.5 ± 1.1	0.1	5.1	5.0	Facultative wetland
I TUAITING TETUTING	1.9 - 1.1	v	2.4	2.0	Facultative
Tamarix chinensis*	1.4 ± 0.6	0.4	2.5	2.1	Facultative wetland
Juglans major	2.0 ± 1.2	0.4	4.2	3.8	Facultative wetland
Acacia neovernicosa	2.8 ± 1.1	1.3	4.2	2.9	Upland
Celtis reticulata	3.8 ± 2.1	0.9	7.1	6.2	Facultative upland
Prosopis velutina	3.4 ± 1.7	0.9	8.0	7.1	Facultative upland
Acacia greggii	4.6 ± 1.8	1.7	7.1	6.4	Upland
Shrub species					

Mulefat, Baccharis salicifolia

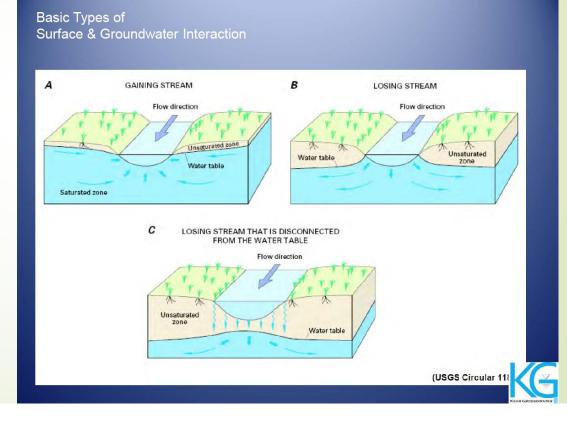
Mulefat

TABLE 4. Mean depth to groundwater, standard deviation, minimum and maximum depth, range, and wetland indicator class (Reed 1988) for common woody species in San Pedro River floodplain study plots.

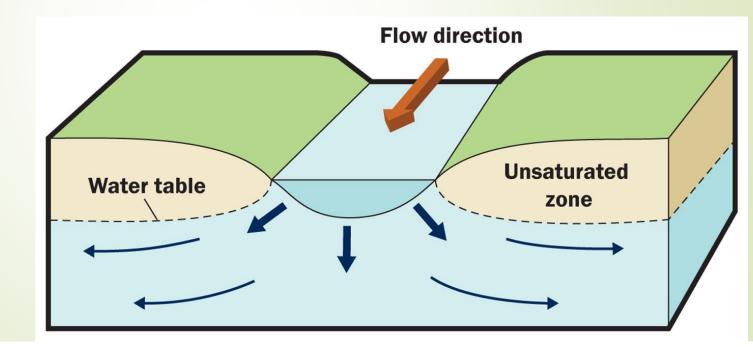
Species	Dep				
	Mean ± 1 sd	Min	Max	Range	Wetland class
Juvenile tree species					
Salix gooddingii	0.6 ± 0.6	0.1	2.0	1.9	Obligate wetland
Populus fremontii	0.9 ± 0.5	0.2	2.0	1.8	Facultative wetland
Fraxinus velutina	1.2 ± 0.7	0.3	2.1	1.8	Facultative
Tamarix chinensis*	1.3 ± 0.6	0.2	2.5	2.2	Facultative wetland
Juglans major	1.9 ± 1.0	0.3	3.9	3.6	Facultative wetland
Celtis reticulata	2.8 ± 1.3	1.2	6.2	6.0	Facultative upland
Prosopis velutina	2.9 ± 1.6	0.7	6.6	5.9	Facultative upland
Rhus microphylla	3.2 ± 2.1	0.7	6.6	5.9	Upland
Acacia greggii	4.4 ± 1.8	1.7	6.2	4.5	Upland
Mature tree species					
Salix gooddingii	1.4 ± 0.9	0.1	3.2	3.1	Obligate wetland
Populus fremontii	1.5 ± 1.1	0.1	5.1	5.0	Facultative wetland
Fraxinus velutina	1.6 ± 1.1	0.4	3.2	2.8	Facultative
Tamarix chinensis*	1.4 ± 0.6	0.4	2.5	2.1	Facultative wetland
Juglans major	2.0 ± 1.2	0.4	O fact may	.8	Facultative wetland
Acacia neovernicosa	2.8 ± 1.1	1.3	9 feet max	.9	Upland
Celtis reticulata	3.8 ± 2.1	0.9		2	Facultative upland
Prosopis velutina	3.4 ± 1.7	0.9	8.0	7.1	Facultative upland
Acacia greggii	4.6 ± 1.8	1.7	7.1	6.4	Upland
Shrub species					
Baccharis salicifolia	1.2 ± 0.9	0.0	2.8	2.8	Facultative wetland
Senecio longilobus	2.0 ± 0.5	1.4	2.8	1.4	Facultative wetland Upland
Chrysothamnus nauseosus	2.0 ± 0.3 2.1 ± 0.8	0.7	3.5	2.8	Upland
Hymenoclea monogyra	2.1 ± 0.8 2.1 ± 1.3	0.8	5.8	5.0	Upland

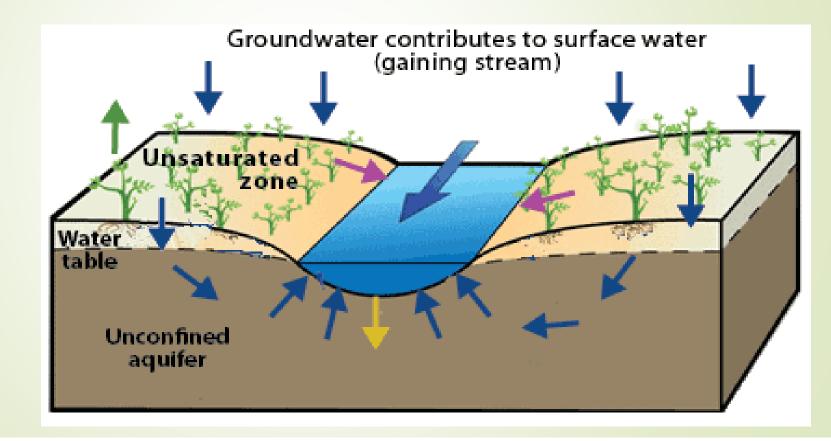
Increased distance to groundwater – Least Bell's Vireo

- Stressed or eliminated native woody riparian vegetation on floodplain
- Decreased or eliminated riparian woody plant recruitment
- Increased invasion of exotic plants
- Conversion of riparian to upland vegetation



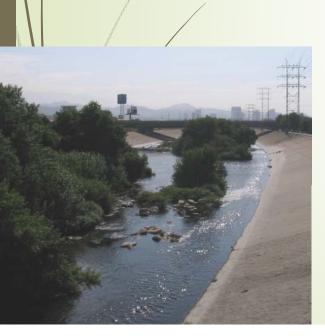
Increased distance to groundwater – Least Bell's Vireo (cont.)


- Decreased leaf-out of native riparian woody plants
- Decrease plant productivity
- Decreased insect prey biomass
- Decrease or eliminated vireo productivity and occupation
- Fewer vireo pairs, reduced fledgling productivity


Groundwater and surface water often contribute to each other, depending on the type of stream

Surface water contributes to groundwater in a losing stream

Groundwater contributes to surface water in a gaining stream



High groundwater levels often maintain stream flow

What surface water does for vireo:

- Maintains high groundwater levels in nearby riparian floodplains
- Maintains surface soil moisture levels for riparian vegetation that occurs adjacent to channels (particularly in areas where groundwater is distant)
- (Surface water is not a direct feature of vireo habitat, but indirectly helps maintain riparian vegetation actually utilized by vireos)

Decreased surface water

- Reduces groundwater recharge in downstream areas
- Decreases surface soil moisture in riparian areas along naturally wetted channels
- Reduces riparian plant and insect prey productivity in adjacent riparian areas where groundwater is not high or artificially reduced.
- Reduces vireo pair numbers and nest productivity in areas where groundwater is not high

What flooding does for vireo:

- Episodically covers or submerges floodplain with water
- Temporarily increases surface soil moisture in floodplain
- Recharges groundwater levels

What flooding does for vireo (cont.):

- Moves and deposits sediment along channel and floodplain
- Knocks down and denudes vegetation along floodplain – scour
- Cyclically resets successional stages for riparian scrub/woodland/forest
- Prepares essential seedbeds for important woody plant recruitment (e.g., Freemont cottonwood)

Flood inundation

Flood scour, Ventura River

Mixed Riparian Forest

Willow Scrub

Decreased flooding regimes

- Decreased or eliminated successional stage cycling essential for development of high function riparian scrub/woodland/forest age classes
- Reduced or eliminated recruitment of some important riparian woody plants, such as cottonwood
- Reduced vireo nesting and productivity

Water - Riparian Vegetation - Arthropods

Riparian trees with decreased water stress have more arboreal arthropod biomass compared to riparian trees with increased water stress. (Kirkpatrick, Conway, and LaRoche 2009)

